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Solving partial differential equations (PDEs) belongs to the most fundamental
and practically important research challenges in mathematics and in the compu-
tational sciences. Such equations are typically solved numerically since obtaining
their explicit solution is usually very difficult in practice or even impossible. One
of the classical and nowadays well-established and popular approaches is the finite
difference method [1, 2, 3] which exploits a local Taylor expansion to replace a
differential equation by the difference one. This raises the question how to pre-
serve fundamental properties of the underlying PDEs at the discrete level. From a
geometric point of view, the most important properties are symmetries and con-
servation laws. Importance of conservation laws in mathematical physics could not
be underestimated, since many fundamental properties for nonlinear PDEs (like
existence and uniqueness of solutions) typically are based on conservation laws.
From algebraic perspective, the basic object which should be preserved is algebraic
relations between equations and their differential (difference) consequences. The
problem here occurs because finite difference approximation of derivation doesn’t
satisfy Leibnitz rule.

The fundamental requirement of a finite difference scheme (FDS) is its con-
vergence to a solution of the corresponding differential problem as the grid spac-
ings go to zero. According to the Lax-Richtmyer equivalence theorem [4, 5], for
a scalar PDE it has been adopted that the convergence is provided if a given
finite-difference approximation (FDA) to the PDE is consistent and stable. The
consistency implies a reduction of the FDA to the original PDE when the grid
spacings go to zero, and it is obvious that the consistency is necessary for con-
vergence. The theorem states that a FDS for an initial value (Cauchy) problem
providing the existence and uniqueness of the solution converges if and only if its
FDA is consistent and numerically stable.

In this talk we describe algorithmic methods to generate FDAs to PDEs on
orthogonal and uniform grids, and to verify strong consistency of the obtained
FDAs. The main algorithmic tool for the case of linear PDEs is the difference
elimination provided by Groebner bases [6, 7, 8] for a certain elimination ranking.
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Figure 1. Simulation of the Kármán vortex street computed
with the new FDA. The characteristic repeating pattern of
swirling vortices can be observed, cf. [15].

Given a system of polynomially-nonlinear PDEs and its FDA, the s-consistency
analysis is based on a computation of a difference standard Groebner basis and the
construction of a differential Thomas decomposition [9, 10] for the PDE system.
This talk is an extension of the methodology of [8, 11, 12, 13, 14]. As a relevant
example in practice, we apply the procedure of the strong consistent FDA gen-
eration to the two-dimensional Navier-Stokes equations for the unsteady motion
of an incompressible fluid of constant viscosity. For these equations, we construct
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two fully conservative FDAs (one s-consistent and one w-consistent). We use the
FDAs for the numerical simulation on exact solutions and consider a Kármán vor-
tex street to analyze the influence of the consistency on the numerical quality of
these schemes.
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